Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 15: 200-218, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38484152

RESUMO

We describe the analytical validation of NeXT Personal®, an ultra-sensitive, tumor-informed circulating tumor DNA (ctDNA) assay for detecting residual disease, monitoring therapy response, and detecting recurrence in patients diagnosed with solid tumor cancers. NeXT Personal uses whole genome sequencing of tumor and matched normal samples combined with advanced analytics to accurately identify up to ~1,800 somatic variants specific to the patient's tumor. A personalized panel is created, targeting these variants and then used to sequence cell-free DNA extracted from patient plasma samples for ultra-sensitive detection of ctDNA. The NeXT Personal analytical validation is based on panels designed from tumor and matched normal samples from two cell lines, and from 123 patients across nine cancer types. Analytical measurements demonstrated a detection threshold of 1.67 parts per million (PPM) with a limit of detection at 95% (LOD95) of 3.45 PPM. NeXT Personal showed linearity over a range of 0.8 to 300,000 PPM (Pearson correlation coefficient = 0.9998). Precision varied from a coefficient of variation of 12.8% to 3.6% over a range of 25 to 25,000 PPM. The assay targets 99.9% specificity, with this validation study measuring 100% specificity and in silico methods giving us a confidence interval of 99.92 to 100%. In summary, this study demonstrates NeXT Personal as an ultra-sensitive, highly quantitative and robust ctDNA assay that can be used to detect residual disease, monitor treatment response, and detect recurrence in patients.


Assuntos
DNA Tumoral Circulante , Neoplasias , Humanos , DNA Tumoral Circulante/genética , Mutação , Neoplasias/diagnóstico , Neoplasias/genética , DNA de Neoplasias/genética , Bioensaio , Biomarcadores Tumorais/genética
2.
Clin Cancer Res ; 27(15): 4265-4276, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34341053

RESUMO

PURPOSE: While immune checkpoint blockade (ICB) has become a pillar of cancer treatment, biomarkers that consistently predict patient response remain elusive due to the complex mechanisms driving immune response to tumors. We hypothesized that a multi-dimensional approach modeling both tumor and immune-related molecular mechanisms would better predict ICB response than simpler mutation-focused biomarkers, such as tumor mutational burden (TMB). EXPERIMENTAL DESIGN: Tumors from a cohort of patients with late-stage melanoma (n = 51) were profiled using an immune-enhanced exome and transcriptome platform. We demonstrate increasing predictive power with deeper modeling of neoantigens and immune-related resistance mechanisms to ICB. RESULTS: Our neoantigen burden score, which integrates both exome and transcriptome features, more significantly stratified responders and nonresponders (P = 0.016) than TMB alone (P = 0.049). Extension of this model to include immune-related resistance mechanisms affecting the antigen presentation machinery, such as HLA allele-specific LOH, resulted in a composite neoantigen presentation score (NEOPS) that demonstrated further increased association with therapy response (P = 0.002). CONCLUSIONS: NEOPS proved the statistically strongest biomarker compared with all single-gene biomarkers, expression signatures, and TMB biomarkers evaluated in this cohort. Subsequent confirmation of these findings in an independent cohort of patients (n = 110) suggests that NEOPS is a robust, novel biomarker of ICB response in melanoma.


Assuntos
Resistencia a Medicamentos Antineoplásicos/imunologia , Melanoma/tratamento farmacológico , Melanoma/imunologia , Modelos Imunológicos , Previsões , Humanos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...